EmmmuaCode EmmmuaCode
首页​
导航🚀​
  • 数据结构
  • 计算机网络
  • Java基础

    • JavaSE
    • JVM虚拟机
    • JUC并发编程
  • JavaWeb

    • Servlet
    • MVC
    • filter|listener
  • HTML
  • CSS
  • JavaScript
  • Vue
  • uni-app
  • Spring5
  • SpringMVC
  • SpringBoot2
  • SpringCloud
  • SpringSecurity
  • 搜索引擎

    • ElasticSearch
  • 消息队列

    • RabbitMQ
  • 服务器

    • Nginx🌐
  • 服务框架

    • Dubbo
  • Python基础
  • 数据分析
  • Hadoop
  • SQL 数据库

    • MySQL
  • NoSQL 数据库

    • NoSQL数据库概论
    • Redis
    • MongoDB
    • HBase
  • 框架

    • MyBatis
    • MyBatis-Plus
    • ShardingSphere
  • 部署

    • Linux
    • Docker
  • 管理

    • Maven
    • Git
  • 友情链接
  • 优秀博客文章
  • 索引

    • 分类
    • 标签
    • 归档
  • 其他

    • 关于
Github (opens new window)

wufan

海内存知己,天涯若比邻。
首页​
导航🚀​
  • 数据结构
  • 计算机网络
  • Java基础

    • JavaSE
    • JVM虚拟机
    • JUC并发编程
  • JavaWeb

    • Servlet
    • MVC
    • filter|listener
  • HTML
  • CSS
  • JavaScript
  • Vue
  • uni-app
  • Spring5
  • SpringMVC
  • SpringBoot2
  • SpringCloud
  • SpringSecurity
  • 搜索引擎

    • ElasticSearch
  • 消息队列

    • RabbitMQ
  • 服务器

    • Nginx🌐
  • 服务框架

    • Dubbo
  • Python基础
  • 数据分析
  • Hadoop
  • SQL 数据库

    • MySQL
  • NoSQL 数据库

    • NoSQL数据库概论
    • Redis
    • MongoDB
    • HBase
  • 框架

    • MyBatis
    • MyBatis-Plus
    • ShardingSphere
  • 部署

    • Linux
    • Docker
  • 管理

    • Maven
    • Git
  • 友情链接
  • 优秀博客文章
  • 索引

    • 分类
    • 标签
    • 归档
  • 其他

    • 关于
Github (opens new window)
  • MySQL-基础

    • MySQL-简介
    • MySQL-CRUD
    • MySQL-函数
    • MySQL 多表查询
    • MySQL 约束与自增长
    • MySQL 索引与事务
    • MySQL 表类型和存储引擎
    • MySQL 视图与管理
  • MySQL-进阶

    • MySQL 存储引擎
    • MySQL 索引
    • MySQL SQL优化
    • MySQL 视图/存储过程/触发器
    • MySQL 锁
    • MySQL InnoDB引擎
    • MySQL 管理
  • MySQL-运维

    • MySQL 日志
    • MySQL 主从复制
    • MySQL 分库分表
    • MySQL 读写分离
  • NoSQL 数据库概论

    • 非关系型数据库
    • NoSQL数据库理论基础
    • NoSQL数据库分类
  • Redis

    • Redis 数据库简介
    • Redis 概述安装
    • 常用五大数据类型
    • Redis 配置文件
    • Redis 发布和订阅
    • Redis 新数据类型
    • Redis Java整合
    • Redis 事务与锁
    • Redis 持久化操作
    • Redis 主从复制
      • 概念
      • 搭建一主多从
      • 配置三类
        • 一主二仆
        • 薪火相传
        • 反客为主
        • 复制原理
      • 哨兵模式
        • 什么是哨兵模式
        • 配置测试
        • Java整合
    • Redis 集群搭建
    • Redis 缓存问题
    • Redis 分布式锁
    • Redisson 的应用
    • Redis 6.0新功能
  • MongoDB

    • MongoDB 相关概念
    • MongoDB 安装
    • MongoDB 常用命令
    • MongoDB 索引-Index
    • MongoDB 整合Java案例
    • MongoDB 集群和安全
  • HBase

    • HBase简介
    • HBase系统架构
    • HBase数据定义
    • HBase数据操作
    • HBase基本原理
  • MyBatis

    • MyBatis 入门案例
    • XML 配置
    • XML 映射文件
    • 动态SQL
    • 缓存
    • MyBatis的逆向工程
    • 分页插件
  • MyBatis-Plus

    • MyBatis-Plus 简介
    • MyBatis-Plus 入门案例
    • MyBatis-Plus 基本CRUD
    • MyBatis-Plus 常用注解
    • 条件构造器和常用接口
    • MyBatis-Plus 插件
    • MyBatis-Plus 通用枚举
    • MyBatis-Plus 代码生成器
    • MyBatis-Plus 多数据源
    • MyBatisX插件
  • ShardingSphere

    • ShardingSphere_高性能架构模式
    • ShardingSphere 简介
    • ShardingSphere 主从同步
    • ShardingSphere_JDBC 读写分离
    • ShardingSphere-JDBC垂直分片
    • ShardingSphere-JDBC水平分片
    • 启动ShardingSphere-Proxy
    • ShardingSphere-Proxy读写分离
    • ShardingSphere-Proxy垂直分片
  • studynotes
  • database
  • Redis
wufan
2022-06-19
目录

Redis 主从复制

# Redis 主从复制

# 概念

image

主从复制,是指将一台 Redis 服务器的数据,复制到其他的 Redis 服务器。前者称为主节点 (master/leader),后者称为从节点(slave/follower);数据的复制是单向的,只能由主节点到从节点。Master 以写为主,Slave 以读为主。

默认情况下,每台 Redis 服务器都是主节点;且一个主节点可以有多个从节点(或没有从节点),但一个从节点只能有一个主节点。

主从复制的作用主要包括:

  • 数据冗余:主从复制实现了数据的热备份,是持久化之外的一种数据冗余方式
  • 故障恢复:当主节点出现问题时,可以由从节点提供服务,实现快速的故障恢复;实际上是一种服务的冗余
  • 负载均衡:在主从复制的基础上,配合读写分离,可以由主节点提供写服务,由从节点提供读服务 (即写 Redis 数据时应用连接主节点,读 Redis 数据时应用连接从节点),分担服务器负载;尤其是在写少读多的场景下,通过多个从节点分担读负载,可以大大提高 Redis 服务器的并发量
  • 高可用基石:除了上述作用以外,主从复制还是哨兵和集群能够实施的基础,因此说主从复制是 Redis 高可用的基础

一般来说,要将 Redis 运用于工程项目中,只使用一台 Redis 是万万不能的,原因如下:

  • 从结构上,单个 Redis 服务器会发生单点故障,并且一台服务器需要处理所有的请求负载,压力较大;
  • 从容量上,单个 Redis 服务器内存容量有限,就算一台 Redis 服务器内存容量为 256G,也不能将所有内存用作 Redis 存储内存,一般来说,单台 Redis 最大使用内存不应该超过 20G。

电商网站上的商品,一般都是一次上传,无数次浏览的,说专业点也就是「多读少写」。

对于这种场景,我们可以使如下这种架构:

image

# 搭建一主多从

查看当前库的信息:info replication

127.0.0.1:6379> info replication
# Replication
role:master            # 角色
connected_slaves:0     # 从机数量
master_failover_state:no-failover
master_replid:5ea47aa7d0e765ce2c5d242df2c85070675dd296
master_replid2:0000000000000000000000000000000000000000
master_repl_offset:0
second_repl_offset:-1
repl_backlog_active:0
repl_backlog_size:1048576
repl_backlog_first_byte_offset:0
repl_backlog_histlen:0
1
2
3
4
5
6
7
8
9
10
11
12
13

因为没有多个服务器,就以本地开启 3 个端口,模拟 3 个服务

既然需要启动多个服务,就需要多个配置文件。每个配置文件对应修改以下信息:

  • 端口号(port)
  • pid文件名(pidfile)
  • 日志文件名(logfile)
  • rdb文件名(dbfilename)
  1. 创建目录
mkdir /myredis
1
  1. 复制redis.conf配置文件到文件夹中
cp /etc/redis.conf /myredis/redis.conf
1
  1. 配置一主两从,创建三个配置文件
    1. redis6379.conf
    2. redis6380.conf
    3. redis6381.conf
  • 关闭appendonly

image

vim redis6379.conf
1

写入以下内容

include /myredis/redis.conf
pidfile /var/run/redis_6379.pid
port 6379
dbfilename dump6379.rdb
1
2
3
4

其他两个端口为6380,6381,其他不变

  1. 配置好分别启动 3 个不同端口服务
[root@master myredis]# redis-server redis6379.conf
[root@master myredis]# redis-server redis6380.conf
[root@master myredis]# redis-server redis6381.conf
[root@master myredis]# ps -ef | grep redis
root       3103      1  0 20:30 ?        00:00:04 redis-server *:6379
root       3825      1  0 21:28 ?        00:00:00 redis-server *:6380
root       3831      1  0 21:29 ?        00:00:00 redis-server *:6381
root       3845   3272  4 21:29 pts/0    00:00:00 grep --color=auto redis
1
2
3
4
5
6
7
8
  1. 查看三台主机运行情况,分别执行
redis-cli -p 6379
redis-cli -p 6380
redis-cli -p 6381
1
2
3

image

# 配置三类

# 一主二仆

可以发现,默认情况下,开启的每个 Redis 服务器都是主节点

  • 配置为一个 Master 和 两个 Slave(即一主二仆)

6379 为主,6380、6381 为从,分别在 6380、6381 的 Redis 上执行如下指令:

slaveof 127.0.0.1 6379
1

image

  • 在主机设置值,在从机都可以取到,但是从机不能写值

image

我们这里是使用命令搭建,是「暂时的」,如果重启三个 Redis 服务,则又恢复到三主的地位

如果想配置「永久的」,则去配置里进行修改,找到 slaveof <ip> <port> 指令进行配置:

image

使用规则

当主机断电宕机后,默认情况下从机的角色不会发生变化,集群中只是失去了写操作,当主机恢复以后,又会连接上从机恢复原状。

当从机断电宕机后,若不是使用配置文件配置的从机,再次启动后作为主机是无法获取之前主机的数据的,若此时重新配置称为从机,又可以获取到主机的所有数据。这里就要提到一个同步原理。

有两种方式可以产生新的主机:看下文「反客为主」

# 薪火相传

上一个 Slave 可以是下一个 Slave 和 Master,Slave 同样可以接收其他 Slaves 的连接和同步请求,那么该 Slave 作为了链条中下一个的 Master,可以有效减轻 Master 的写压力,去中心化降低风险。

image

在一个从机用 slaveof <ip> <port> 指令连接另一个从机

image

image

# 反客为主

当一个 master 宕机后,后面的 slave 可以立刻升为 master,其后面的 slave 不用做任何修改。

有两种方式可以产生新的主机:

  • 从机手动执行命令 slaveof no one,这样执行以后从机会独立出来成为一个主机
  • 使用哨兵模式(自动选举)

# 复制原理

  • Slave 启动成功连接到 Master 后会发送一个 sync 命令
  • Master 接到命令,启动后台的存盘进程,同时收集所有接收到的用于修改数据集命令,在后台进程执行完毕之后,Master 将传送整个数据文件到 Slave,并完成一次完全同步
  • 全量复制:而 Slave 服务在接收到数据库文件数据后,将其存盘并加载到内存中
  • 增量复制:Master 继续将新的所有收集到的修改命令依次传给 Slave,完成同步
  • 但是只要是重新连接 Master,一次完全同步(全量复制)将被自动执行

image

# 哨兵模式

# 什么是哨兵模式

主从切换技术的方法是:当主服务器宕机后,需要手动把一台从服务器切换为主服务器,这就需要人工干预,费事费力,还会造成一段时间内服务不可用。这不是一种推荐的方式,更多时候,我们优先考虑哨兵模式。Redis 从 2.8 开始正式提供了 Sentinel(哨兵)架构来解决这个问题。

反客为主的自动版,能够后台监控主机是否故障,如果故障了根据投票数自动将从库转换为主库。

哨兵模式是一种特殊的模式,首先 Redis 提供了哨兵的命令,哨兵是一个独立的进程,作为进程,它会独立运行。其原理是 哨兵通过发送命令,等待 Redis 服务器响应,从而监控运行的多个 Redis 实例

image

这里的哨兵有两个作用:

  • 通过发送命令,让 Redis 服务器返回监控其运行状态,包括主服务器和从服务器
  • 当哨兵监测到 Master 宕机,会自动将 Slave 切换成 Master,然后通过 发布订阅模式 通知其他的从服务器,修改配置文件,让它们切换主机

然而一个哨兵进程对 Redis 服务器进行监控,可能会出现问题,为此,我们可以使用多个哨兵进行监控。各个哨兵之间还会进行监控,这样就形成了多哨兵模式。

image

假设主服务器宕机,哨兵 1 先检测到这个结果,系统并不会马上进行 failover 过程,仅仅是哨兵 1 主观的认为主服务器不可用,这个现象成为 主观下线。当后面的哨兵也检测到主服务器不可用,并且数量达到一定值时,那么哨兵之间就会进行一次投票,投票的结果由一个哨兵发起,进行 failover [故障转移]操作。切换成功后,就会通过发布订阅模式,让各个哨兵把自己监控的从服务器实现切换主机,这个过程称为 客观下线。

# 配置测试

  • 调整结构,6379 带着 80、81
  • 自定义的 /myredis 目录下新建 sentinel.conf 文件,名字千万不要错
  • 配置哨兵,填写内容
    • sentinel monitor 被监控主机名字 127.0.0.1 6379 1

例如:

sentinel monitor mymaster 127.0.0.1 6379 1
1

上面最后一个数字 1,表示主机挂掉后 Slave 投票看让谁接替成为主机,得票数多少后成为主机,这里的例子是 1 票。

  • 启动哨兵
redis-sentinel myredis/sentinel.conf
1

上述目录依照各自的实际情况配置,可能目录不同

成功启动哨兵模式:

image

此时哨兵监视着我们的主机 6379,当我们断开主机后:

image

哪个从机会被选举为主机呢?根据优先级别:slave-priority,这个指令需要去每个从机的配置文件进行配置,默认都是 100。

建议每个从机都配置不同的 slave-priority,这样可以避免复制延时。

值越小优先级越高。

复制延时

由于所有的写操作都是先在 Master 上操作,然后同步更新到 Slave 上,所以从 Master 同步到 Slave 机器有一定的延迟,当系统很繁忙的时候,延迟问题会更加严重,Slave 机器数量的增加也会使这个问题更加严重。

哨兵模式的优缺点

优点:

  1. 哨兵集群,基于主从复制模式,所有主从复制的优点,它都有
  2. 主从可以切换,故障可以转移,系统的可用性更好
  3. 哨兵模式是主从模式的升级,手动到自动,更加健壮

缺点:

  1. Redis不好在线扩容,集群容量一旦达到上限,在线扩容就十分麻烦
  2. 实现哨兵模式的配置其实是很麻烦的,里面有很多配置项

哨兵模式的全部配置

完整的哨兵模式配置文件 sentinel.conf

# Example sentinel.conf
 
# 哨兵 sentinel 实例运行的端口 默认 26379
port 26379
 
# 哨兵 sentinel 的工作目录
dir /tmp
 
# 哨兵 sentinel 监控的 redis 主节点的 ip port 
# master-name:可以自己命名的主节点名字 只能由字母 A-z、数字 0-9 、这三个字符 ".-_" 组成。
# quorum:当这些 quorum 个数 sentinel 哨兵认为 Master 主节点失联 那么这时客观上认为主节点失联了
# sentinel monitor <master-name> <ip> <redis-port> <quorum>
sentinel monitor mymaster 127.0.0.1 6379 1
 
# 当在 Redis 实例中开启了 requirepass foobared 授权密码 这样所有连接 Redis 实例的客户端都要提供密码
# 设置哨兵 sentinel 连接主从的密码 注意必须为主从设置一样的验证密码
# sentinel auth-pass <master-name> <password>
sentinel auth-pass mymaster MySUPER--secret-0123passw0rd
 
 
# 指定多少毫秒之后 主节点没有应答哨兵 sentinel 此时 哨兵主观上认为主节点下线 默认 30 秒
# sentinel down-after-milliseconds <master-name> <milliseconds>
sentinel down-after-milliseconds mymaster 30000
 
# 这个配置项指定了在发生 failover 主备切换时最多可以有多少个 Slave 同时对新的 Master 进行同步,
# 这个数字越小,完成 failover 所需的时间就越长,
# 但是如果这个数字越大,就意味着越 多的 Slave 因为 replication 而不可用。
# 可以通过将这个值设为 1 来保证每次只有一个 Slave 处于不能处理命令请求的状态。
# sentinel parallel-syncs <master-name> <numslaves>
sentinel parallel-syncs mymaster 1
 

 
# 故障转移的超时时间 failover-timeout 可以用在以下这些方面: 
#1. 同一个 sentinel 对同一个 Master 两次 failover 之间的间隔时间。
#2. 当一个 Slave 从一个错误的 Master 那里同步数据开始计算时间。直到 Slave 被纠正为向正确的 Master 那里同步数据时。
#3. 当想要取消一个正在进行的 failover 所需要的时间。  
#4. 当进行 failover 时,配置所有 Slaves 指向新的 Master 所需的最大时间。不过,即使过了这个超时,Slaves 依然会被正确配置为指向Master,但是就不按 parallel-syncs 所配置的规则来了
# 默认三分钟
# sentinel failover-timeout <master-name> <milliseconds>
sentinel failover-timeout mymaster 180000
 
# SCRIPTS EXECUTION
 
# 配置当某一事件发生时所需要执行的脚本,可以通过脚本来通知管理员,例如当系统运行不正常时发邮件通知相关人员。
# 对于脚本的运行结果有以下规则:
# 若脚本执行后返回 1,那么该脚本稍后将会被再次执行,重复次数目前默认为 10
# 若脚本执行后返回 2,或者比 2 更高的一个返回值,脚本将不会重复执行。
# 如果脚本在执行过程中由于收到系统中断信号被终止了,则同返回值为 1 时的行为相同。
# 一个脚本的最大执行时间为 60s,如果超过这个时间,脚本将会被一个 SIGKILL 信号终止,之后重新执行。
 
# 通知型脚本:当 sentinel 有任何警告级别的事件发生时(比如说 Redis 实例的主观失效和客观失效等等),将会去调用这个脚本,
# 这时这个脚本应该通过邮件,SMS 等方式去通知系统管理员关于系统不正常运行的信息。调用该脚本时,将传给脚本两个参数,
# 一个是事件的类型,
# 一个是事件的描述。
# 如果 sentinel.conf 配置文件中配置了这个脚本路径,那么必须保证这个脚本存在于这个路径,并且是可执行的,否则 sentinel 无法正常启动成功。
# 通知脚本
# sentinel notification-script <master-name> <script-path>
  sentinel notification-script mymaster /var/redis/notify.sh
 
# 客户端重新配置主节点参数脚本
# 当一个 Master 由于 failover 而发生改变时,这个脚本将会被调用,通知相关的客户端关于 Master 地址已经发生改变的信息。
# 以下参数将会在调用脚本时传给脚本:
# <master-name> <role> <state> <from-ip> <from-port> <to-ip> <to-port>
# 目前 <state> 总是「failover」,
# <role> 是「leader」或者「observer」中的一个。 
# 参数 from-ip, from-port, to-ip, to-port 是用来和旧的 Master 和新的 Master(即旧的 Slave)通信的
# 这个脚本应该是通用的,能被多次调用,不是针对性的。
# sentinel client-reconfig-script <master-name> <script-path>
sentinel client-reconfig-script mymaster /var/redis/reconfig.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

# Java整合

开启哨兵后,Java 获取哨兵的代码:

private static JedisSentinelPool jedisSentinelPool=null;
public static Jedis getJedisFromSentinel(){
    if(jedisSentinelPool == null){
    	Set<String> sentinelSet = new HashSet<>();
        
    	sentinelSet.add("192.168.197.200:26379"); // 指定哨兵的ip和端口
    	JedisPoolConfig jedisPoolConfig = new JedisPoolConfig();
    	jedisPoolConfig.setMaxTotal(10); //最大可用连接数
    	jedisPoolConfig.setMaxIdle(5); //最大闲置连接数
    	jedisPoolConfig.setMinIdle(5); //最小闲置连接数
    	jedisPoolConfig.setBlockWhenExhausted(true); //连接耗尽是否等待
    	jedisPoolConfig.setMaxWaitMillis(2000); //等待时间
    	jedisPoolConfig.setTestOnBorrow(true); //取连接的时候进行一下测试 ping pong
    	jedisSentinelPool = new JedisSentinelPool("mymaster",sentinelSet,jedisPoolConfig);
    	return jedisSentinelPool.getResource();
    }else{
    	return jedisSentinelPool.getResource();
    }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#Redis
上次更新: 2024/04/21, 09:42:22
Redis 持久化操作
Redis 集群搭建

← Redis 持久化操作 Redis 集群搭建→

最近更新
01
微信支付功能的实现与流程
11-21
02
购物车与结算区域的深入优化与功能完善
11-21
03
购物车与结算区域的功能实现与优化
11-21
更多文章>
Theme by Vdoing | Copyright © 2023-2024 EmmmuaCode | 黔ICP备2022009864号-2
  • 跟随系统
  • 浅色模式
  • 深色模式
  • 阅读模式