EmmmuaCode EmmmuaCode
首页​
导航🚀​
  • 数据结构
  • 计算机网络
  • Java基础

    • JavaSE
    • JVM虚拟机
    • JUC并发编程
  • JavaWeb

    • Servlet
    • MVC
    • filter|listener
  • HTML
  • CSS
  • JavaScript
  • Vue
  • uni-app
  • Spring5
  • SpringMVC
  • SpringBoot2
  • SpringCloud
  • SpringSecurity
  • 搜索引擎

    • ElasticSearch
  • 消息队列

    • RabbitMQ
  • 服务器

    • Nginx🌐
  • 服务框架

    • Dubbo
  • Python基础
  • 数据分析
  • Hadoop
  • SQL 数据库

    • MySQL
  • NoSQL 数据库

    • NoSQL数据库概论
    • Redis
    • MongoDB
    • HBase
  • 框架

    • MyBatis
    • MyBatis-Plus
    • ShardingSphere
  • 部署

    • Linux
    • Docker
  • 管理

    • Maven
    • Git
  • 友情链接
  • 优秀博客文章
  • 索引

    • 分类
    • 标签
    • 归档
  • 其他

    • 关于
Github (opens new window)

wufan

海内存知己,天涯若比邻。
首页​
导航🚀​
  • 数据结构
  • 计算机网络
  • Java基础

    • JavaSE
    • JVM虚拟机
    • JUC并发编程
  • JavaWeb

    • Servlet
    • MVC
    • filter|listener
  • HTML
  • CSS
  • JavaScript
  • Vue
  • uni-app
  • Spring5
  • SpringMVC
  • SpringBoot2
  • SpringCloud
  • SpringSecurity
  • 搜索引擎

    • ElasticSearch
  • 消息队列

    • RabbitMQ
  • 服务器

    • Nginx🌐
  • 服务框架

    • Dubbo
  • Python基础
  • 数据分析
  • Hadoop
  • SQL 数据库

    • MySQL
  • NoSQL 数据库

    • NoSQL数据库概论
    • Redis
    • MongoDB
    • HBase
  • 框架

    • MyBatis
    • MyBatis-Plus
    • ShardingSphere
  • 部署

    • Linux
    • Docker
  • 管理

    • Maven
    • Git
  • 友情链接
  • 优秀博客文章
  • 索引

    • 分类
    • 标签
    • 归档
  • 其他

    • 关于
Github (opens new window)
  • MySQL-基础

    • MySQL-简介
    • MySQL-CRUD
    • MySQL-函数
    • MySQL 多表查询
    • MySQL 约束与自增长
    • MySQL 索引与事务
    • MySQL 表类型和存储引擎
    • MySQL 视图与管理
  • MySQL-进阶

    • MySQL 存储引擎
    • MySQL 索引
    • MySQL SQL优化
    • MySQL 视图/存储过程/触发器
    • MySQL 锁
    • MySQL InnoDB引擎
    • MySQL 管理
  • MySQL-运维

    • MySQL 日志
    • MySQL 主从复制
    • MySQL 分库分表
    • MySQL 读写分离
  • NoSQL 数据库概论

    • 非关系型数据库
    • NoSQL数据库理论基础
    • NoSQL数据库分类
  • Redis

    • Redis 数据库简介
    • Redis 概述安装
    • 常用五大数据类型
    • Redis 配置文件
    • Redis 发布和订阅
    • Redis 新数据类型
    • Redis Java整合
    • Redis 事务与锁
    • Redis 持久化操作
    • Redis 主从复制
    • Redis 集群搭建
    • Redis 缓存问题
    • Redis 分布式锁
    • Redisson 的应用
    • Redis 6.0新功能
  • MongoDB

    • MongoDB 相关概念
    • MongoDB 安装
    • MongoDB 常用命令
    • MongoDB 索引-Index
    • MongoDB 整合Java案例
    • MongoDB 集群和安全
  • HBase

    • HBase简介
    • HBase系统架构
    • HBase数据定义
    • HBase数据操作
    • HBase基本原理
  • MyBatis

    • MyBatis 入门案例
    • XML 配置
    • XML 映射文件
    • 动态SQL
    • 缓存
    • MyBatis的逆向工程
    • 分页插件
  • MyBatis-Plus

    • MyBatis-Plus 简介
    • MyBatis-Plus 入门案例
    • MyBatis-Plus 基本CRUD
    • MyBatis-Plus 常用注解
    • 条件构造器和常用接口
    • MyBatis-Plus 插件
    • MyBatis-Plus 通用枚举
    • MyBatis-Plus 代码生成器
    • MyBatis-Plus 多数据源
    • MyBatisX插件
  • ShardingSphere

    • ShardingSphere_高性能架构模式
      • 1、读写分离架构
      • 2、数据库分片架构
        • 2.1、垂直分片
        • 2.2、水平分片
      • 3、读写分离和数据分片架构
      • 4、实现方式
        • 4.1、程序代码封装
        • 4.2、中间件封装
        • 4.3、常用解决方案
    • ShardingSphere 简介
    • ShardingSphere 主从同步
    • ShardingSphere_JDBC 读写分离
    • ShardingSphere-JDBC垂直分片
    • ShardingSphere-JDBC水平分片
    • 启动ShardingSphere-Proxy
    • ShardingSphere-Proxy读写分离
    • ShardingSphere-Proxy垂直分片
  • studynotes
  • database
  • ShardingSphere
wufan
2024-03-04
目录

ShardingSphere_高性能架构模式

# 第01章 高性能架构模式

互联网业务兴起之后,海量用户加上海量数据的特点,单个数据库服务器已经难以满足业务需要,必须考虑数据库集群的方式来提升性能。高性能数据库集群的第一种方式是“读写分离”,第二种方式是“数据库分片”。

# 1、读写分离架构

读写分离原理:读写分离的基本原理是将数据库读写操作分散到不同的节点上,下面是其基本架构图:

img

读写分离的基本实现:

  • 主库负责处理事务性的增删改操作,从库负责处理查询操作,能够有效的避免由数据更新导致的行锁,使得整个系统的查询性能得到极大的改善。
  • 读写分离是根据 SQL 语义的分析,将读操作和写操作分别路由至主库与从库。
  • 通过一主多从的配置方式,可以将查询请求均匀的分散到多个数据副本,能够进一步的提升系统的处理能力。
  • 使用多主多从的方式,不但能够提升系统的吞吐量,还能够提升系统的可用性,可以达到在任何一个数据库宕机,甚至磁盘物理损坏的情况下仍然不影响系统的正常运行。

下图展示了根据业务需要,将用户表的写操作和读操路由到不同的数据库的方案:

image-20220804223138651

CAP 理论:

CAP 定理(CAP theorem)又被称作布鲁尔定理(Brewer's theorem),是加州大学伯克利分校的计算机科学家埃里克·布鲁尔(Eric Brewer)在 2000 年的 ACM PODC 上提出的一个猜想。对于设计分布式系统的架构师来说,CAP 是必须掌握的理论。

在一个分布式系统中,当涉及读写操作时,只能保证一致性(Consistence)、可用性(Availability)、分区容错性(Partition Tolerance)三者中的两个,另外一个必须被牺牲。

  • C 一致性(Consistency):对某个指定的客户端来说,读操作保证能够返回最新的写操作结果
  • A 可用性(Availability):非故障的节点在合理的时间内返回合理的响应(不是错误和超时的响应)
  • P 分区容忍性(Partition Tolerance):当出现网络分区后(可能是丢包,也可能是连接中断,还可能是拥塞),系统能够继续“履行职责”

CAP特点:

  • 在实际设计过程中,每个系统不可能只处理一种数据,而是包含多种类型的数据,有的数据必须选择 CP,有的数据必须选择 AP,分布式系统理论上不可能选择 CA 架构。

  • CP:如下图所示,为了保证一致性,当发生分区现象后,N1 节点上的数据已经更新到 y,但由于 N1 和 N2 之间的复制通道中断,数据 y 无法同步到 N2,N2 节点上的数据还是 x。这时客户端 C 访问 N2 时,N2 需要返回 Error,提示客户端 C“系统现在发生了错误”,这种处理方式违背了可用性(Availability)的要求,因此 CAP 三者只能满足 CP。

img

  • AP:如下图所示,为了保证可用性,当发生分区现象后,N1 节点上的数据已经更新到 y,但由于 N1 和 N2 之间的复制通道中断,数据 y 无法同步到 N2,N2 节点上的数据还是 x。这时客户端 C 访问 N2 时,N2 将当前自己拥有的数据 x 返回给客户端 C 了,而实际上当前最新的数据已经是 y 了,这就不满足一致性(Consistency)的要求了,因此 CAP 三者只能满足 AP。注意:这里 N2 节点返回 x,虽然不是一个“正确”的结果,但是一个“合理”的结果,因为 x 是旧的数据,并不是一个错乱的值,只是不是最新的数据而已。

img

  • CAP 理论中的 C 在实践中是不可能完美实现的,在数据复制的过程中,节点N1 和节点 N2 的数据并不一致(强一致性)。即使无法做到强一致性,但应用可以采用适合的方式达到最终一致性。具有如下特点:

    • 基本可用(Basically Available):分布式系统在出现故障时,允许损失部分可用性,即保证核心可用。
    • 软状态(Soft State):允许系统存在中间状态,而该中间状态不会影响系统整体可用性。这里的中间状态就是 CAP 理论中的数据不一致。
    • 最终一致性(Eventual Consistency):系统中的所有数据副本经过一定时间后,最终能够达到一致的状态。

# 2、数据库分片架构

读写分离的问题:

读写分离分散了数据库读写操作的压力,但没有分散存储压力,为了满足业务数据存储的需求,就需要将存储分散到多台数据库服务器上。

数据分片:

将存放在单一数据库中的数据分散地存放至多个数据库或表中,以达到提升性能瓶颈以及可用性的效果。 数据分片的有效手段是对关系型数据库进行分库和分表。数据分片的拆分方式又分为垂直分片和水平分片。

# 2.1、垂直分片

垂直分库:

按照业务拆分的方式称为垂直分片,又称为纵向拆分,它的核心理念是专库专用。 在拆分之前,一个数据库由多个数据表构成,每个表对应着不同的业务。而拆分之后,则是按照业务将表进行归类,分布到不同的数据库中,从而将压力分散至不同的数据库。

img

下图展示了根据业务需要,将用户表和订单表垂直分片到不同的数据库的方案:

image-20220804221855449

垂直拆分可以缓解数据量和访问量带来的问题,但无法根治。如果垂直拆分之后,表中的数据量依然超过单节点所能承载的阈值,则需要水平分片来进一步处理。

垂直分表:

垂直分表适合将表中某些不常用的列,或者是占了大量空间的列拆分出去。

假设我们是一个婚恋网站,用户在筛选其他用户的时候,主要是用 age 和 sex 两个字段进行查询,而 nickname 和 description 两个字段主要用于展示,一般不会在业务查询中用到。description 本身又比较长,因此我们可以将这两个字段独立到另外一张表中,这样在查询 age 和 sex 时,就能带来一定的性能提升。

垂直分表引入的复杂性主要体现在表操作的数量要增加。例如,原来只要一次查询就可以获取 name、age、sex、nickname、description,现在需要两次查询,一次查询获取 name、age、sex,另外一次查询获取 nickname、description。

img

水平分表适合表行数特别大的表,水平分表属于水平分片。

# 2.2、水平分片

水平分片又称为横向拆分。 相对于垂直分片,它不再将数据根据业务逻辑分类,而是通过某个字段(或某几个字段),根据某种规则将数据分散至多个库或表中,每个分片仅包含数据的一部分。 例如:根据主键分片,偶数主键的记录放入 0 库(或表),奇数主键的记录放入 1 库(或表),如下图所示。

image-20220804222212087

单表进行切分后,是否将多个表分散在不同的数据库服务器中,可以根据实际的切分效果来确定。

  • **水平分表:**单表切分为多表后,新的表即使在同一个数据库服务器中,也可能带来可观的性能提升,如果性能能够满足业务要求,可以不拆分到多台数据库服务器,毕竟业务分库也会引入很多复杂性;

  • **水平分库:**如果单表拆分为多表后,单台服务器依然无法满足性能要求,那就需要将多个表分散在不同的数据库服务器中。

阿里巴巴Java开发手册:

【推荐】单表行数超过 500 万行或者单表容量超过 2GB,才推荐进行分库分表。

说明:如果预计三年后的数据量根本达不到这个级别,请不要在创建表时就分库分表。

# 3、读写分离和数据分片架构

下图展现了将数据分片与读写分离一同使用时,应用程序与数据库集群之间的复杂拓扑关系。

image-20220804223321167

# 4、实现方式

读写分离和数据分片具体的实现方式一般有两种: 程序代码封装和中间件封装。

# 4.1、程序代码封装

程序代码封装指在代码中抽象一个数据访问层(或中间层封装),实现读写操作分离和数据库服务器连接的管理。

**其基本架构是:**以读写分离为例

img

# 4.2、中间件封装

中间件封装指的是独立一套系统出来,实现读写操作分离和数据库服务器连接的管理。对于业务服务器来说,访问中间件和访问数据库没有区别,在业务服务器看来,中间件就是一个数据库服务器。

**基本架构是:**以读写分离为例

img

# 4.3、常用解决方案

Apache ShardingSphere(程序级别和中间件级别)

MyCat(数据库中间件)

#ShardingSphere
上次更新: 2024/04/21, 09:42:22
MyBatisX插件
ShardingSphere 简介

← MyBatisX插件 ShardingSphere 简介→

最近更新
01
微信支付功能的实现与流程
11-21
02
购物车与结算区域的深入优化与功能完善
11-21
03
购物车与结算区域的功能实现与优化
11-21
更多文章>
Theme by Vdoing | Copyright © 2023-2024 EmmmuaCode | 黔ICP备2022009864号-2
  • 跟随系统
  • 浅色模式
  • 深色模式
  • 阅读模式